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Artificial intelligence (AI) and machine learning (ML) are driving a paradigm shift in spine surgery, augmenting surgical decision-making 
with data-driven insights. This review synthesizes the current landscape of AI applications across the surgical care continuum and evaluates 
its potential to enhance precision, personalization, and value. A narrative review was conducted through a critical analysis of contemporary 
literature, including original research, systematic reviews, and editorials from high-impact orthopaedic and spine surgery journals. Key themes 
were identified and organized to provide a coherent overview of AI’s role in preoperative planning, intraoperative execution, and postoperative 
economics. AI demonstrates significant utility in automating spinal imaging analysis, with convolutional neural networks enabling rapid 
vertebral segmentation and accurate measurement of alignment parameters. Predictive ML models excel in forecasting individualized 
patient risks, with specific algorithms outperforming surgeons in predicting complications and long-term outcomes. Intraoperatively, AI-
driven navigation and robotic systems achieve a pedicle screw placement accuracy exceeding 94% while reducing radiation exposure. 
Furthermore, AI applications are emerging in health economics, effectively predicting costs and automating administrative tasks. Despite 
this, various challenges continue to hinder progress, notably the black-box nature of algorithms, data bias, ethical dilemmas, and barriers to 
clinical adoption.
The available evidence positions AI not as a proven superior alternative, but as a promising adjunct with proof-of-concept applications across 
the spine care continuum. AI serves as a powerful adjunctive tool in spine surgery, promising to enhance procedural precision, personalize 
patient care, and improve economic efficiency. While limitations regarding transparency, data diversity, and ethical frameworks must be 
addressed, the ongoing development of explainable AI and robust datasets indicates a transformative future for spinal surgical practice. To 
ensure safe and equitable adoption, the next steps require prospective multicenter validation, active surgeon participation in governance and 
education, and global collaborations to develop diverse datasets.
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INTRODUCTION

From its conceptual origins in Alan Turing’s theoretical work 
of the 1950s, artificial intelligence (AI), characterized by its 
capacity to emulate human intelligent behavior, has matured 
into a transformative force within modern healthcare. 
The foundational event was the 1956 Dartmouth College 
conference, which formally established AI as a field of study. 
Machine learning (ML), a core element of AI, allows systems 
to learn from experience and enhance their performance 
by discerning complex relationships in data, thereby 
producing inferences and predictions without being explicitly 

programmed for every individual scenario. The rapid expansion 
of literature, technology, and clinical use makes understanding 
AI/ML applications increasingly imperative in spine surgery, 
where their capacity for sophisticated pattern recognition 
and prediction is uniquely suited to the field’s intricate and 
multifactorial nature (Figure 1)(1).
The management of complex spinal pathologies, such as 
adult spinal deformity (ASD), tumors, and infections, demands 
the synthesis of a vast array of factors, from intricate 
radiographic parameters and biomechanical considerations 
to patient-specific comorbidities and goals, making surgical 
decision-making a highly nuanced process, particularly for 
conditions like ASD which require a holistic assessment of 
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the entire skeletal structure for comprehensive radiographic 
evaluation(2). While traditional statistical methods are powerful 
for hypothesis testing and establishing associations in well-
understood domains with structured datasets, such as public 
health, ML is better suited for generating individualized 
predictions from high-dimensional data in innovative fields 
like omics, radiodiagnostics, and personalized medicine. AI 
and ML algorithms excel in this predictive capacity, offering 
the potential to personalize care, enhance surgical precision, 
improve risk stratification, and optimize resource allocation. As 
emphasized by Ali et al.(3) technologies are driving significant 
transformations in spinal surgery. Neural networks enhance the 

accuracy of preoperative planning, while the use of augmented 
reality refines intraoperative navigation and reduces radiation 
exposure. Furthermore, postoperative predictive analytics 
enable risk stratification, thereby enabling improved precision in 
surgery, optimization of clinical workflows, and personalization 
of patient care.
The drive for innovation is further underscored by the 
alarmingly high complication rates in complex procedures. 
Effective presurgical planning must address critical patient-
specific risk factors, such as age, body mass index (BMI), smoking, 
and osteoporosis, to mitigate complications, as evidenced by 
Akıntürk et al.(4) whose analysis of 26,207 patients revealed a 

Figure 1. Workflow of AI integration in spine surgery
This schematic illustrates the continuous, cyclical framework of AI integration across the core phases of spine surgical care. The model 
is built upon a continuous learning feedback loop (grey arrow), where postoperative outcomes are used to refine and improve the AI 
algorithms, creating a system that evolves with each case. Preoperative phase (blue): the process initiates with the synthesis of multifaceted 
preoperative data, including medical imaging (X-Ray, CT, MRI, EOS), patient-specific variables from EHRs (comorbidities, demographics), 
and PROs. This data informs the initial surgical planning. AI processing engine (central purple hub): the raw data is processed by a central 
AI engine utilizing a suite of ML methodologies. These include supervised learning for predictive analytics, deep learning (e.g., CNNs) for 
image segmentation and analysis, and generative AI (e.g., GANs) for data augmentation and synthetic image generation. Intraoperative 
phase (green): the AI-generated surgical plan is executed with enhanced precision in the operating room. AI-driven technologies such as AR 
navigation systems and robotic-assisted surgery platforms translate the preoperative plan into action, significantly improving the accuracy 
of instrument placement (e.g., >94% for pedicle screws) and drastically reducing radiation exposure (e.g., by up to 90%) for the patient 
and surgical team. Postoperative phase (orange): the outcomes of surgery are quantitatively measured, capturing both clinical endpoints 
(e.g., complication rates, achievement of MCID in PROs) and health economic metrics (e.g., resource utilization, cost prediction, automated 
medical coding). This data is the crucial output that feeds back into the system. Feedback loop (grey): postoperative outcome data is 
aggregated and used to retrain the AI models in the central engine. This closed-loop system ensures continuous refinement, validation, and 
improvement of the predictive algorithms and surgical planning tools, ultimately leading to progressively superior, personalized, and value-
based patient care. AI: Artificial intelligence, CT: Computed tomography, MRI: Magnetic resonance imaging, EHRs: Electronic health records, 
PROs: Patient-reported outcomes, ML: Machine learning, CNNs: Convolutional neural networks, GANs: Generative adversarial networks, AR: 
Augmented reality, MCID: Minimal clinically important difference, 
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34.5% complication rate predominantly from implant failure 
(e.g., screw loosening, junctional kyphosis), neurologic deficits 
(10.8%), infection (3.6%), and cardiopulmonary events (4.8%), 
all of which adversely impact patient outcomes, length of stay, 
and readmission rates. This stark reality necessitates moving 
beyond traditional risk assessment and underscores the critical 
need for tools that can optimize every phase of care, from 
patient selection to postoperative management.
The proliferation of large, multi-institutional datasets, 
enhanced computational resources, and advanced algorithms 
are accelerating the adoption of AI in spine surgery, where 
it is enhancing diagnostics, increasing surgical precision, 
and enabling personalized rehabilitation through early 
risk assessment and adaptive therapies, despite persistent 
challenges such as data limitations and ethical considerations(5). 
The aim of this review is to synthesize recent literature findings 
and provide a comprehensive overview of the current state of 
AI in spinal surgery. It will explore the fundamental types of ML, 
detail its applications in imaging, surgical planning, outcome 
prediction, and health economics, and discuss the significant 
ethical and practical challenges that must be addressed for its 
successful integration into routine clinical practice.

MATERIALS AND METHODS

This narrative review was conducted through a synthesis of 
contemporary literature identified from the provided articles, 
which represent a cross-section of recent editorials, reviews, 
and original research in high-impact orthopaedic and spine 
surgery journals. The provided documents were systematically 
analyzed to extract information on the principles of AI/ML, 
specific applications in spine surgery (e.g., imaging, prediction 
models, surgical techniques, health economics), and discussed 
limitations.
Key themes and sub-themes were identified and organized 
into logical sections to construct a coherent overview of the 
field. The focus was placed on applications with direct clinical 
relevance, including:
a. The use of AI for automated measurement of spinal 
parameters and image segmentation.
b. The development of predictive models for surgical outcomes, 
complications, and cost.
c. The integration of AI into surgical navigation, robotics, and 
augmented reality systems.
d. The role of AI in health economics and value-based care.
e. The ethical and practical challenges facing implementation.
This approach offers a comprehensive, detailed analysis of AI’s 
current role in spinal surgery, incorporating the latest consensus 
and innovations from recent literature.

RESULTS

Fundamentals of ML in Spine Surgery

ML is broadly categorized into four main paradigms: supervised 
learning, which uses labeled data to map inputs to outputs 

for tasks such as classification and regression; unsupervised 
learning, which identifies hidden patterns and structures in 
unlabeled data through clustering and dimensionality reduction; 
semi-supervised learning, which leverages both labeled and 
unlabeled data to improve prediction accuracy when labeled 
data is scarce; and reinforcement learning, which enables 
an agent to learn optimal behaviors through environmental 
feedback based on rewards and penalties, a method particularly 
suited for complex domains such as robotics and autonomous 
systems(6). Understanding these paradigms is crucial for 
interpreting the literature. Recent reviews have highlighted 
an increasing emphasis on transparency and interpretability 
in clinical settings. In this context, explainable AI (XAI) not 
only provides the underlying algorithmic prediction but also 
supplies explanations that offer insights into the prediction’s 
reliability(7). Furthermore, generative adversarial networks 
(GANs), which employ two competing AI models (a generator 
and a discriminator) to produce high-quality synthetic data, 
are emerging as a powerful tool for medical imaging and data 
augmentation (Table 1)(8).
Supervised Learning:  Algorithms are trained on a labeled 
dataset in which the target output (e.g., “fracture“ or “no 
fracture“) is predefined. The model acquires the ability to 
map input data to their correct labels and is later evaluated 
on unlabeled datasets to assess its performance. Common 
supervised models include:
Decision Trees (DT) and Random Forests (RF):  These models 
use a tree-like structure of decisions (e.g., “Is the posterior 
ligamentous complex intact?”) to reach an outcome (e.g., 
“stable” or “unstable”). RF is an ensemble learning technique 
that operates by constructing a multitude of DT. This approach 
improves overall accuracy and mitigates the danger of 
overfitting, which is common in single DT. They are highly 
interpretable and have been used for risk stratification and 
classification, such as the AOSpine fracture classification, need 
of blood transfusion, preoperative planning/selection, patient 
type clustering, adverse events and serious complications(5,9).
Support Vector Machines (SVM): SVMs are a supervised learning 
model used for classification, regression, and outlier detection. 
Their mechanism involves finding the mathematically optimal 
decision boundary (hyperplane) that maximizes the margin 
between different classes in a high-dimensional feature space. 
These models demonstrate particular efficacy in image-based 
diagnostic and prognostic tasks, including the classification of 
disc degeneration and scoliosis types, the automated detection 
and localization of lumbar spine and vertebral compression 
fractures, and the prediction of postoperative outcomes(5,10).
Unsupervised Learning:  Algorithms process unlabeled 
datasets autonomously without human guidance, discovering 
hidden patterns or intrinsic structures. A common application 
is clustering patients into novel subgroups based on a 
combination of clinical and radiographic features, which may 
predict distinct outcomes or complication profiles(11).
Artificial Neural Networks (ANN) and Deep Learning 
(DL):  ANNs are composed of layered, interconnected nodes 
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(neurons) designed to process input data, mirroring the 
structure and function of the human brain.  DL  refers to 
ANNs with many hidden layers, capable of learning complex, 
hierarchical representations of data. A specialized type of 
ANN, the  convolutional neural network (CNN), is particularly 
powerful for image processing. Inspired by the visual cortex, 
CNNs are adept at processing pixel data and are the backbone 
of most modern medical imaging AI applications, from vertebral 
segmentation to automated Cobb angle measurement(12). Beyond 
image analysis, CNNs are increasingly employed for advanced 
prognostic modeling, demonstrating strong predictive utility in 
forecasting favorable postoperative outcomes, estimating the 
risk of relapse following discectomy, the diagnosis of cervical 
myelopathy, calculating mortality rates after surgery for spinal 

epidural abscess, and predicting probabilities of readmission 
or reoperation after posterior lumbar interlaminar fusion, 
thereby directly informing preoperative planning and surgical 
candidate selection, particularly in complex cases(6).
Semi-supervised Learning: To overcome the scarcity of 
annotated fracture data in spinal computed tomography (CT) 
segmentation, Pan et al.(13) developed a semi-supervised 2.5D 
U-Net framework that leverages both labeled and unlabeled 
datasets. Their approach incorporates a cascade design aligned 
with clinical workflows to enhance segmentation precision 
across vertebrae. In addressing computational constraints, 
Huang et al.(14) strategically employed 2D network training 
supplemented with 2.5D inputs to optimize performance. The 
model utilizes a dual-branch encoder with multi-scale Swin 

Table 1. ML paradigms and algorithms in spine surgery research
Paradigm/concept Key idea Common algorithms Clinical relevance and examples

Supervised learning

Learns a function that maps inputs 
to outputs using a labeled dataset 
for tasks like classification and 
regression.

DT, RF, SVM, linear/
logistic regression, 
neural networks

Classification and risk stratification: RF/DT 
for AOSpine fracture classification (stable/
unstable), predicting need for blood transfusion, 
adverse events, and serious complications. 
SVMs for image-based tasks like classifying 
disc degeneration, scoliosis types, and detecting 
lumbar spine or vertebral compression 
fractures.

Unsupervised 
learning

Identifies hidden patterns and 
intrinsic structures within unlabeled 
data through clustering and 
dimensionality reduction.

K-means clustering, 
hierarchical clustering, 
principal component 
analysis, autoencoders

Patient phenotyping: clustering patients into 
novel subgroups based on clinical/radiographic 
features to predict distinct outcomes or 
complication profiles.

Semi-supervised 
learning

Leverages both labeled and 
unlabeled data to improve 
predictive accuracy where labeled 
data is scarce.

Label propagation, 
self-training, 
generative models

Data augmentation: overcoming annotation 
scarcity; e.g., a 2.5D U-Net framework with 
a cascade design and level set function for 
precise vertebral segmentation, including 
fractures.

Reinforcement 
learning

An agent learns optimal behaviors 
through environmental feedback 
based on rewards and penalties, 
suitable for complex domains.

Q-learning, deep 
Q-networks, policy 
gradient methods

Robotic surgery: autonomous surgical planning; 
e.g., SafeRPlan, a DRL approach for pedicle 
screw placement that achieves >5% higher 
safety rates under noise.

Deep learning 
(specialized 
architectures)

A subset of ML using multi-
layered networks to learn complex, 
hierarchical data representations, 
often applied in a supervised 
manner.

CNN, recurrent neural 
networks, transformers

Medical image analysis and prognostics: CNNs 
are used for vertebral segmentation, automated 
Cobb angle measurement, fracture detection, 
and prognostic modeling (e.g., forecasting 
postoperative outcomes, relapse after 
discectomy, mortality rates, and readmissions/
reoperations) to aid preoperative planning.

XAI

A suite of techniques designed to 
make the predictions of complex 
“black box” models transparent and 
interpretable to humans.

SHAP, LIME, attention 
mechanisms

Clinical adoption: providing surgeons with a 
rationale for a model’s prediction of surgical 
risk or diagnosis to foster trust and facilitate 
integration into care. 

GANs

A framework using two competing 
networks (generator and 
discriminator) to produce high-
quality synthetic data instances.

Deep convolutional 
GANs, StyleGAN, 
CycleGAN

Addressing data scarcity: generating synthetic 
medical images (e.g., spine CTs/MRIs) to 
augment training datasets and protect patient 
privacy. 

This table outlines key ML paradigms and AI concepts in spine surgery research, categorizing them by principle, common algorithms, and clinical 
applications. It demonstrates how these technologies advance diagnostic precision, data-driven planning, and personalized care. ML: Machine learning, 
AI: Artificial intelligence, DT: Decision trees, RF: Random forests, SVM: Support vector machines, DRL: Deep reinforcement learning, CNN: Convolutional 
neural networks, XAI: Explainable artificial intelligence, SHAP: SHapley additive exPlanations, LIME: Local interpretable model-agnostic explanations, 
GAN: Generative adversarial networks, CT: Computed tomography, MRI: Magnetic resonance imaging
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Transformer modules for improved feature extraction and 
introduces a level set function to ensure consistency between 
pixel classification and geometric regularization. This method 
demonstrates strong performance across evaluation metrics, 
highlighting the efficacy of semi-supervised learning and 
advanced architectural designs in medical image segmentation. 
In a separate clinical prediction task, Park et al.(15) evaluated 
several supervised ML algorithms to forecast whether patients 
with cervical spondylotic myelopathy would achieve a minimum 
clinically important difference (MCID) in neck pain following 
surgery. They emphasized that model selection should be 
guided by dataset characteristics and the specific clinical 
question. For their balanced dataset, precision was identified 
as the most relevant metric to optimize the identification of 
true MCID achievers. Logistic regression achieved the highest 
precision across both short- and long-term follow-up intervals, 
demonstrating consistent superiority among the tested models 
and reaffirming its utility for clinical classification problems.
Reinforcement Learning: In their study, Ao et al.(16) introduce 
SafeRPlan, a safety-aware deep reinforcement learning 
approach for autonomous pedicle screw placement in robotic 
spine surgery. This method incorporates an uncertainty-
aware safety filter to ensure safe actions, uses pre-trained 
neural networks to compensate for incomplete intraoperative 
anatomical information, and employs domain randomization 
to improve generalization under noise. Experimental results 
demonstrated that SafeRPlan achieved over 5% higher safety 
rates compared to baseline methods, even under realistic 
surgical conditions.
XAI:  As AI models, particularly complex DL systems, become 
more integral to clinical decision-making, the demand for 
transparency and interpretability has surged. XAI refers to a 
suite of techniques designed to make the predictions of these 
“black box” models understandable to human experts. This is 
achieved by providing insights into the model’s confidence, 
highlighting the features most influential to a decision (e.g., 
specific image regions in a CT scan), and generating a rationale 
for its output. In spine surgery, XAI is critical for fostering 
clinical trust and facilitating adoption, as it allows surgeons 
to validate an AI’s recommendation for fracture classification, 
surgical planning, or risk prediction before integrating it into 
patient care(7).
GANs: GANs represent a category of DL frameworks wherein 
two neural networks operate in opposition, a generator that 
produces synthetic data instances, and a discriminator that 
distinguishes between authentic and generated data. Through 
this iterative competition, the system progressively improves 
its ability to generate convincingly realistic synthetic outputs. 
In medical imaging, GANs address the critical challenge of 
data scarcity and privacy by creating high-quality synthetic 
spine CT or magnetic resonance imaging (MRI) images(8). These 
generated datasets can be used to augment limited training 
data, improving model robustness and generalizability, or to 
create anonymized data for research without compromising 

patient confidentiality. Applications include data augmentation 
for segmentation models and simulating anatomical variations 
for training purposes(17).

Applications in Spinal Imaging and Diagnostics

AI has made significant strides in automating and enhancing 
the interpretation of spinal images, reducing inter-observer 
variability and surgeon workload.
Automated Vertebral Segmentation and Identification: CNNs 
form a fundamental framework for diagnostic and therapeutic 
planning by allowing highly accurate, automated detection and 
localization of vertebrae in various imaging modalities such 
as X-Ray, CT, MRI, and ultrasound. These systems significantly 
outperform manual methods in consistency and precision, 
reducing the mean absolute error in Cobb angle measurements 
to less than 3° compared to manual variability of 2.8°-8°. AI-
based approaches also demonstrate robustness in analyzing 
spinal curvature from suboptimal images, such as off-center, 
angulated, or smartphone-captured images, and support 
radiation-free scoliosis screening via ultrasound through 
automatic extraction of anatomical landmarks for 3D spinal 
reconstruction. Additional applications include quantitative 
assessment of thoracolumbar compression fractures to inform 
clinical management(18). This is crucial for surgical navigation 
systems, as it allows for automatic registration of the patient’s 
anatomy to preoperative images, facilitating the planning 
of pedicle screw trajectories. Burström et al.(19) created an 
automated spine segmentation algorithm for this purpose, 
based on 3D reconstructions obtained from cone-beam CT.
Classification of Pathology: ML algorithms excel at classifying 
spinal pathologies through medical imaging analysis, 
demonstrating particular strength in automatically grading 
intervertebral disc degeneration according to standardized 
systems such as Pfirrmann classification, with CNNs achieving 
remarkable agreement (up to 95.6%) with expert radiologists(20). 
These techniques have been successfully extended to identify 
various spinal conditions including stenosis, fractures, 
sacroileitis, and tumors. For neural compression pathologies, 
AI systems analyze morphological features to diagnose disc 
herniation and nerve root compression with high accuracy and 
exceptional reliability(21-23). Additionally, AI models demonstrate 
sophisticated diagnostic capabilities in distinguishing benign 
from malignant vertebral fractures on CT scans, matching or 
surpassing radiology residents’ performance, and in grading 
metastatic spinal cord compression by precisely delineating 
margins of involvement(24).
Automated Measurement of Radiographic Parameters:  AI 
enables automated measurement of key spinopelvic 
parameters, including coronal and sagittal vertical axes, as well 
as key sagittal alignments such as thoracic kyphosis, lumbar 
lordosis, and the pelvic parameters of incidence, tilt, and sacral 
slope, from standing whole-spine radiographs. These AI-
derived measurements demonstrate excellent agreement with 
expert surgical assessments, achieving intraclass correlation 



54

Öztürk et al. Artificial Intelligence in Spinal Care

J Turk Spinal Surg 2026;37(Suppl 1):49-59

coefficients exceeding 0.90 and mean absolute errors below 3° 
or 3 mm, thereby providing a rapid and reliable alternative to 
manual methods(25).
Generative AI for Enhanced Imaging:  Recent advances have 
introduced the use of GANs for anatomical image reconstruction. 
Santilli et. al.(26) developed a publicly available GAN model that 
generates synthetic STIR sequences of the lumbar spine from 
standard T1- and T2-weighted MRI scans. Expert radiologists 
assessed these synthetic datasets and judged them to be 
of comparable or superior quality in approximately 77% of 
cases, underscoring their potential to streamline and improve 
imaging workflows for preoperative evaluation. Importantly, the 
generated images were shown to be diagnostically equivalent 
to conventional acquisitions while demonstrating superior 
overall image quality, supporting their possible integration into 
routine clinical practice.

Predictive Modeling for Surgical Outcomes and Complications

AI enables personalized risk stratification and outcome 
prediction in spine surgery, advancing the field toward truly 
individualized patient care (Table 2)(5).
The potential of AI is not merely theoretical but now 
demonstrates tangible superiority in specific domains. A 
compelling example lies in outcome prediction, where an 
algorithm developed by the International Spine Study Group 
demonstrated 89% accuracy in forecasting risks. This stands in 
stark contrast to a study of 39 experienced deformity surgeons, 
whose predictions for the same set of cases were highly 
discordant and inconsistent, with estimates for complication 
rates ranging from 0% to 100%. This highlights the inherent 

limitations of human cognition when processing multivariate 
data and the confounding role of emotional bias, where a 
recent negative outcome can unconsciously skew a surgeon’s 
prediction for a subsequent, similar patient. This concept is 
further explored by Martin and Bono(27), who note that while 
traditional regression techniques are well-suited for assessing 
causation, they are poorly optimized for prediction, a gap that 
ML specifically aims to fill.
Predicting Complications:  ML models have been developed 
to predict a wide range of complications with high accuracy. 
These include:
Reoperation and Major Complications:  ML algorithms 
synthesize high-dimensional data from clinical, imaging, and 
patient sources to produce personalized risk assessments and 
predictions for surgical results. For instance, Scheer et al.(9) 
developed a model predicting major complications after ASD 
surgery with 87.6% accuracy, while Pellisé et al.(28) employed 
random forest models trained on more than 100 variables 
to forecast major complications, reoperations, and hospital 
readmissions, with model performance yielding area under the 
curve (AUC) scores between 0.67 and 0.92. Building upon this, 
sophisticated ML techniques, including LightGBM and RF, have 
been leveraged to generate probabilistic forecasts for ideal 
surgical outcomes. These are defined as a clinically significant 
enhancement in quality of life without major complications, 
achieved by incorporating modifiable risk factors into their 
analytical architecture. 
Proximal Junctional Kyphosis/Failure (PJK/PJF):  AI and ML 
models hold considerable promise for predicting PJK and 
PJF after ASD surgery, with some studies reporting prediction 

Table 2. AI for predictive modeling of surgical outcomes and complications in spine surgery

Prediction category Specific target Reported performance/key finding

General complications Major complications, reoperation, 
readmission

87.6% accuracy; AUC: 0.67-0.92 for various outcomes; 
forecasts “ideal outcome” (QoL improvement without 
complications)

Mechanical complications PJK/PJF pseudarthrosis Up to 86% accuracy; AUC: 0.89
91% accuracy; AUC: 0.94; identifies adipose tissue biomarkers

Surgical site infection Postoperative infection 93% positive predictive value; identifies key predictors 
(modic changes, glucose, etc.)

Other clinical outcomes Transfusion, length of stay, opioid use Predictive capability demonstrated

Patient-reported outcomes MCID on SRS-22, QALYs Models probability of achieving MCID; predicts QALYs gained; 
external validation performed

Risk stratification Novel ASD classifications Creates patient clusters with distinct risk/PROMs profiles for 
better selection and counseling

Surgical planning Upper instrumented vertebra 
selection, PJK prevention 87.5% accuracy in UIV selection; optimizes surgical angles

Economic outcomes Catastrophic costs, financial outliers Identifies high-cost patients (>$100k); AUC: 0.845-0.883 for 
cost outliers; $469k saved from scheduling AI

This table demonstrates how AI shifts spine surgery from subjective assessment to quantitative, data-driven prediction, achieving high accuracy in 
forecasting both clinical outcomes and economic value. These models enhance surgical precision and advance value-based care through personalized 
risk stratification. AI: Artificial intelligence, AUC: Area under the curve, QoL: Quality-of-life, PJK: Proximal junctional kyphosis, PJF: Proximal junctional 
failure, MCID: Minimum clinically important difference, SRS-22: Scoliosis research society-22 questionnaire, QALYs: Quality-adjusted life year, ASD: Adult 
spinal deformity, PROMs: Patient-reported outcomes measures, UIV: Upper instrumented vertebra
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accuracies as high as 86%(29). For instance, research by Lee et 
al.(30) and Ryu et al.(31) has shown that random forest models 
deliver notably high accuracy and AUC values in forecasting 
PJK/PJF occurrence and pinpointing major reoperation 
risk factors. Nevertheless, Tretiakov et al.(32) note a critical 
limitation: although powerful, RF models may overestimate 
target outcomes in binary classification tasks due to elevated 
out-of-bag error, underscoring the importance of transparency 
and rigorous methodology in predictive modeling.
Pseudarthrosis: Recent advances in ML demonstrate strong 
predictive capabilities for postoperative complications in 
spine surgery. Johnson et al.(33) identified adipose tissue 
features on MRI as potential biomarkers for pseudarthrosis 
risk, independent of BMI. Further advancing this domain, 
Scheer et al.(34) devised ensemble decision tree-based models 
capable of predicting PJK/PJF with 86% accuracy (AUC: 
0.89) and pseudarthrosis with 91% accuracy (AUC: 0.94) in 
a multicenter ASD patient population. Similarly, a separate 
model for predicting pseudarthrosis at 2-year follow-up after 
ASD surgery demonstrated 91% accuracy(35). Complementary to 
these approaches, Wang et al.(36) developed a nomogram model 
showing clinical utility for predicting pseudarthrosis probability, 
highlighting the growing sophistication of AI-driven prognostic 
tools in spinal surgery outcomes.
Surgical Site Infection (SSI):  AI demonstrates promising 
capabilities in predicting SSI risk following spinal procedures. 
While a systematic review by Ndjonko et al.(37) noted that AI 
models show potential for excellent classification accuracy 
in predicting spinal SSI, the authors caution that most 
studies remain in early developmental stages, and reported 
performance metrics should be interpreted with appropriate 
scrutiny.
Other Outcomes: Models also predict transfusion requirements, 
length of hospital stay, and prolonged opioid use(5).
Predicting Patient-reported Outcomes Measures (PROMs): AI is 
increasingly used to predict PROMs following spine surgery, with 
common targets including the modified Japanese Orthopaedic 
Association score for cervical, Oswestry disability index for 
lumbar, and scoliosis research society-22 questionnaire (SRS-
22) for deformity pathologies, alongside pain assessments like 
visual analog scale and numeric rating scale. Predictive models 
incorporate diverse features ranging from demographics 
and surgical characteristics to preoperative PROMs, imaging 
findings, and psychosocial factors. Research by Ames et al.(38) 
and Oh et al.(39) demonstrates ML’s capability to forecast quality-
of-life improvements, such as achieving MCID on SRS-22 or 
predicting quality-adjusted life years (QALYs). A significant 
challenge remains the lack of PROM standardization, which 
complicates comparison across studies and limits consensus 
on optimal implementation.
Risk Stratification and Surgical Planning:  AI significantly 
enhances risk stratification and surgical planning in spine care. 
Unsupervised learning models analyze hundreds of variables 
to create novel ASD classification systems, predicting distinct 

risk profiles and patient-reported outcomes to improve 
preoperative counseling and patient selection. For surgical 
planning, algorithms automate critical decisions, such as 
selecting the upper instrumented vertebra with 87.5% accuracy 
or optimizing the proximal junctional angle to prevent 
mechanical complications(40).

AI-enhanced Surgical Techniques: Navigation, Robotics, and 
Augmented Reality

AI is the engine behind several advanced intraoperative 
technologies that are increasing surgical precision and safety.
Augmented Reality Surgical Navigation (ARSN): ARSN systems, 
use CNN-based segmentation of intraoperative 3D cone-
beam CT images. The system then projects the preoperatively 
planned screw trajectories directly onto the patient’s anatomy 
via a headset or display, creating an “X-ray vision” effect. This 
approach has been demonstrated to increase the accuracy 
of percutaneous pedicle screw placement to over 94%, 
while significantly reducing radiation exposure compared 
to conventional fluoroscopy(41). Recent innovations include 
marker-less registration that uses deep neural networks 
to autonomously identify spinal structures and determine 
their positional configuration in real-time, yielding a median 
angulation error of 1.6° with a translational error of 2.3 mm at 
the screw entry site, all without the time and radiation exposure 
of traditional methods(42).
Robotics:  Robotic-assisted spine surgery systems rely on AI 
algorithms for planning and executing screw placement. The 
robotic arm guides the surgeon to the pre-planned trajectory 
based on intraoperative imaging. Studies report optimal 
placement rates exceeding 97-98%, comparable to the best 
results achieved with navigation. The robot adds a layer of 
precision and eliminates human tremor, standardizing a key 
step of the procedure. A significant learning curve exists; 
success rates improve and conversions to manual placement 
decrease with increased surgeon experience(43).
The integration of AI into preoperative planning is becoming 
increasingly seamless and accessible. Emerging platforms 
now allow surgeons to upload radiographic images via mobile 
applications, where algorithms automatically perform all 
necessary measurements and synthesize relevant risk variables 
to generate a patient-specific surgical plan. The efficacy of such 
tools is significant; they have been shown to reduce the risk 
of critical complications like implant failure and rod breakage 
following osteotomy from historical rates of up to 22% down to 
4.7%, representing a monumental improvement in procedural 
safety and reliability(44).

AI in Health Economics and Value-based Care

AI advances value-based spine surgery through three core 
mechanisms: enhancing patient agency via improved health 
literacy and remote monitoring, automating administrative 
and operational tasks to reduce costs, and augmenting clinical 
decision-making through precise diagnostics, surgical planning, 
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and outcome prediction. Despite its potential, AI implementation 
faces significant challenges including professional resistance, 
data quality and privacy concerns, and substantial financial 
investment in infrastructure(45).
Predicting Cost and Resource Utilization: ML models demonstrate 
significant capability in predicting financial outcomes in spine 
surgery. Karnuta et al.(46) implemented a Naïve Bayes algorithm 
that accurately predicts perioperative outcomes, including 
hospitalization costs, duration of admission, and discharge 
destination for patients undergoing lumbar fusion procedures, 
demonstrating good-to-excellent predictive reliability. 
Cost-effectiveness Analysis:  AI enables sophisticated cost-
effectiveness analysis for spine surgery by integrating 
predictions of QALYs gained with cost projections, creating a 
robust framework for evaluating economic value beyond mere 
procedural expenses. Robotic spine surgery demonstrates cost-
effectiveness through reduced revision rates, lower infections, 
decreased length of stay, and shorter operative times. 
Operational Efficiency:  AI extends its economic impact 
beyond the operating room into hospital administration, 
where algorithms can automatically extract billing codes 
from operative notes with approximately 90% accuracy, 
reducing financial losses from human coding errors and 
streamlining healthcare economic infrastructure. Clinically, 
AI enhances surgical precision through personalized 
interventions, particularly in scoliosis treatment where analysis 
of preoperative imagery helps determine the optimal level of 
surgical intervention tailored to individual patient needs.

DISCUSSION

The adoption of AI in spinal surgery signifies a fundamental 
transformation, providing new tools to improve care across 
all stages, including diagnosis, preoperative planning, 
intraoperative guidance, postoperative management, and health 
economic analysis. The evidence presented demonstrates that 
AI is moving from a research curiosity to a tangible clinical tool 
with validated applications in imaging, prediction, execution, 
and health economics.
The ability of ML models to analyze vast, complex datasets 
allows a more nuanced understanding of diseases like ASD. 
Traditional classification systems are being supplemented by 
data-driven clustering models that can identify patient subtypes 
with unique outcome profiles, enabling more personalized 
and effective treatment strategies. Predictive models for 
complications and PROMs empower surgeons to conduct 
detailed risk-benefit analyses with patients, setting realistic 
expectations and potentially avoiding high-risk surgeries in 
those unlikely to benefit(1,3,5,6).
In the operating room, AI-driven navigation and robotics are 
mitigating human error and elevating the level of precision to 
new heights. The high accuracy rates of percutaneous screw 
placement with ARSN and robotics promise to improve patient 
safety and reduce revision rates(41,43). Furthermore, the reduction 

in fluoroscopy time benefits both the patient and the surgical 
team. Recent advancements, such as marker-less registration 
and machine-vision systems, are pushing this further, reducing 
radiation exposure by up to 90% and significantly cutting down 
procedural time(42).
Perhaps most critically for the future sustainability of spine 
care, AI provides tools for navigating the shift to value-based 
care. By predicting both outcomes and costs, AI enables a 
more sophisticated approach to resource allocation and 
reimbursement, ensuring that interventions are not only 
clinically effective but also economically viable(47).
However, the path to widespread adoption is fraught 
with challenges that the spine community must address 
conscientiously, many of which are underscored in the latest 
literature (Table 3)(1,3):
The “Black Box” Problem and the Need for XAI: The complexity 
of some DL models can make it difficult to understand how 
a specific prediction was made, which can erode clinician 
trust. Efforts to improve model interpretability through XAI are 
therefore not just a technical necessity but a cornerstone for 
building trust and facilitating ethical clinical adoption.
Data Bias and Equity:  If training data is not representative of 
the broader population (e.g., lacking diversity in race, ethnicity, 
or socioeconomic status), algorithms can perpetuate and 
even amplify existing healthcare disparities. Vigilant curation 
of diverse datasets is essential. Chen et al.(48) pointed to the 
challenge of limited dataset diversity, which adversely affects 
the external validity and generalizability of AI-based systems.
Data Privacy and Security: The implementation of such systems 
necessitates access to vast quantities of sensitive patient 
health information. Ensuring stringent cybersecurity protocols 
and strict compliance with data governance regulations, such 
as the general data protection regulation and health insurance 
portability and accountability act, is essential.
Validation and Generalizability:  Most models are developed 
and validated on retrospective data from single or limited 
institutions. Broader external validation in diverse, real-
world settings is essential before they can be relied upon for 
routine clinical decision-making. Mandate external validation 
in independent cohorts before clinical implementation. 
Emerging techniques, such as federated learning frameworks, 
enable continuous validation and model refinement across 
institutions while preserving data privacy and addressing the 
central challenge of data heterogeneity.
Clinical Integration and Workflow:  Integrating these tools 
seamlessly into clinical workflows, perhaps through electronic 
health records systems (EHR) using standards like substitutable 
medical applications, reusable technologies on fast healthcare 
interoperability resources, is another significant hurdle that 
must be overcome to avoid adding to clinician burden(49). This 
is particularly relevant given the spine surgery community’s 
historical reluctance to adopt new technologies that are 
perceived to disrupt established workflows or offer unclear 
cost-benefit advantages.
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Ethical and Legal Liability: The issue of liability arising from 
errors produced by AI systems, such as a diagnostic error by a 
CNN, remains legally and ethically unresolved. A framework for 
human oversight and liability must be established.
De-skilling:  There is a concern that over-reliance on AI 
could lead to the erosion of fundamental surgical skills and 
clinical acumen among surgeons(50). AI must be viewed as an 
augmentative tool, not a replacement for expertise.
Human Factors and Emotional Bias: Beyond processing power, 
AI systems offer a unique advantage: freedom from cognitive 
and emotional bias. AI algorithms, devoid of emotional feedback 
loops, provide consistent, objective predictions based solely on 
the empirical data of thousands of historical cases, plotting a 
patient’s risk on a precise curve rather than a wide, subjective 
range.

Limitations and Challenges

The adoption of AI technologies in spine surgery continues 
to encounter substantial implementation barriers, including 
the “black box” nature of complex algorithms, which may 
undermine clinical trust; limited generalizability due to data 
bias and homogeneity; unresolved ethical and legal concerns 
regarding privacy, security, and liability; and practical barriers 
to workflow integration and potential de-skilling. The historical 
reluctance of spine surgeons to adopt disruptive technologies 
further complicates implementation. As a narrative review, this 

study offers a valuable qualitative synthesis but is inherently 
susceptible to selection bias. Greater transparency regarding 
the literature search strategy and inclusion criteria would 
enhance reproducibility. While the review is well-structured 
and supported by effective tables and figures, the technical 
descriptions of ML architectures (e.g., CNNs, GANs) may challenge 
clinicians without a data science background. Incorporating 
a glossary or expanded contextual definitions could improve 
accessibility without compromising technical depth. The review 
thoroughly identifies adoption barriers but would benefit from 
discussing actionable solutions. Concrete strategies, such as 
interoperability standards for EHR integration, structured AI 
training programs for surgeons, and guidance on regulatory 
compliance, would provide a more practical roadmap for 
translating AI technologies into clinical practice.

Future Directions

Looking ahead, the role of AI in spinal procedures will probably 
see a more advanced and seamless integration throughout the 
care pathway. Current investigations are increasingly directed 
toward refining intraoperative techniques through real-time 
feedback, forecasting the most effective surgical strategies, 
and suggesting customized implants tailored to individual 
anatomical requirements. The development and adoption of 
XAI will be paramount to building trust and understanding 
model decisions. Furthermore, the use of generative AI, like 

Table 3. Challenges and proposed mitigations for AI in spine surgery
Challenge Description Potential mitigation strategies

“Black box” problem Lack of transparency in how complex 
models make decisions.

Develop and use interpretable ML models; invest in XAI 
research.

Data bias and homogeneity
Models trained on non-representative 
data perpetuate disparities and lack 
generalizability.

Curate diverse, multi-institutional datasets; implement 
algorithmic fairness audits.

Privacy and security Risk of breaching sensitive patient health 
information.

Implement robust encryption; adhere strictly to data 
protection regulations (GDPR, HIPAA).

External validation Models may not perform well outside 
their original dataset.

Mandate external validation in independent cohorts 
before clinical implementation. Emerging techniques, 
such as federated learning frameworks, enable 
continuous validation across institutions while preserving 
data privacy.

Clinical integration and 
adoption

AI tools may disrupt workflows; spine 
surgeons are historically late adopters.

Co-design tools with surgeons; integrate with EHRs via 
standards like SMART on FHIR.

Ethical/legal liability Unclear who is responsible when an AI 
system errs.

Establish clear guidelines for human oversight and 
accountability; update regulatory frameworks.

De-skilling Over-reliance on AI could erode surgical 
skills.

Frame AI as a decision-support tool; maintain emphasis 
on core surgical training.

Emotional bias in humans Human predictions are influenced by 
recent experiences and emotions.

Utilize AI as an objective, data-driven second opinion to 
mitigate cognitive bias.

This table outlines key implementation challenges for AI in spine surgery, such as the “black box” problem and data bias, alongside proposed mitigation 
strategies like explainable AI. It provides a balanced perspective on translating algorithmic potential into safe and equitable clinical practice. AI: 
Artificial intelligence, ML: Machine learning, XAI: Explainable artificial intelligence, GDPR: General data protection regulation, HIPAA: Health insurance 
portability and accountability act, EHRs: Electronic health records, SMART: Substitutable medical applications, reusable technologies, FHIR: Fast 
healthcare interoperability resources
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GANs, for creating synthetic data to augment limited datasets 
is a promising frontier to combat data bias. The creation of 
large, diverse, multi-institutional datasets and open-access 
web applications that integrate ML predictions directly into the 
clinical workflow represent the next critical steps toward the 
equitable and practical point-of-care use of AI. For this future to 
be realized, the spine surgery community must actively engage 
in the development, validation, and ethical governance of these 
powerful tools. The journey has just begun, but the fusion of 
human expertise and AI marks the dawn of a new, more precise, 
and value-driven era in spine care.

CONCLUSION

AI is steadily transforming spine surgery, shifting practice from 
an experience-driven discipline toward one that is increasingly 
supported by objective, data-based insights. Applications in 
imaging, risk prediction, navigation, robotics, and economic 
modeling already illustrate how AI can refine precision, tailor 
treatment, and streamline workflows. Rather than replacing the 
surgeon, these tools should be understood as complementary, 
providing consistency and augmenting clinical judgment. For 
this transformation to progress responsibly, several priorities 
must be addressed. First, prospective multicenter trials are 
needed to validate algorithms in everyday clinical environments 
and across heterogeneous patient groups. Second, active 
involvement of spine surgeons in AI development and 
governance will ensure clinical relevance, accountability, and 
ethical oversight. Third, international cooperation to establish 
large, diverse datasets is essential to reduce bias and guarantee 
that innovations benefit patients globally rather than 
selectively. By combining rigorous validation with professional 
leadership and collaborative data sharing, AI can move beyond 
experimental promise to become a trusted partner in surgical 
care. This integration offers a pathway toward more precise, 
equitable, and value-driven spine surgery in the years ahead.
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